
Get	your	code/software	
to	run	on	ARC	systems

August	2023

Matthew Brown
Computational Scientist

Advanced Research Computing
Virginia Tech

Fall	2023	ARC	workshop	Series
Introductory / Orientation Workshops (75 minutes each):
 - Advanced Research Computing (ARC) Overview
 - Connect to ARC systems and run your first jobs
 - Get your software/code to run on ARC
 Series 1: 8/17 - 8/18
 Series 2: Wednesday afternoons: 9/27, 10/4, 10/11

Special Topics (75 minutes each):
 - Monitoring Resource Utilization and Job Efficiency
 - Getting the Best Data Storage Performance on ARC Filesystems
 - Launching in Parallel
 Series 1: Biweekly, Tuesday mornings 9/5, 9/19, 10/3
 Series 2: Weekly, Thursday afternoons 10/26, 11/2, 11/9

Expectations
• This is an informal workshop
• Mostly informational about ARC and research computing at VT
• I want to hear your questions
• Welcome to use chat to ask questions + some time at the end
• Feedback needed to help improve future workshops

• One up / one down at the end

Get	your	software/code	to	work	on	
ARC	systems
Description
ARC systems run software which spans the full spectrum of modern research computing. This workshop addresses several
of the most common software delivery models and how they can be accessed and used on ARC systems.
The demonstrations will be predominantly via the Linux shell command line interface and will cover our "software modules"
system, python environments via Anaconda, and also the main components needed for building software from source
codes, particularly MPI software. Interactive shell jobs are an important tool for each of these models and will be used to
demonstrate how researchers can begin to set up their own software environments and develop workflows on ARC systems.
Participants who already have ARC accounts are invited to follow along with the demonstrations if desired.

Outline:
- Interactive shell jobs
- Search for, load, and manage modules
- Python with Anaconda environments
- Building from source

First	–	a	bit	about	file	transfers

Command line tools: scp, rsync, wget, curl, tar

Graphical tools: MobaXterm, FileZilla, WinSCP

Other organizations: Globus, cloud providers

For speed, package and compress files to optimize transfers!
https://www.docs.arc.vt.edu/usage/scratch.html

Interactive	shell	jobs
Why not just use the login nodes?

1. Login nodes are not always identical to compute nodes. Software
build/configuration environment should mirror the target execution environment.
2. Login nodes are a shared resource. Avoid running anything intensive on the login
nodes.
3. The CPU and memory available on login nodes is limited to minimize the impact of
accidental abuse.

Interactive	shell	jobs
Simplest option: interact --account=<myacct> (default settings apply)

Customizable: Any sbatch/salloc/srun options can be used to modify the
resource request:
--partition= --nodes= --ntasks-per-node= --cpus-per-task=

--gres=gpu:1 --time=d-hh:mm:ss

Advanced option: Compose your own salloc or srun commands.
srun [options] <cmd> get allocation, run cmd and quit
salloc -> srun get allocation -> run command in allocation
srun --pty [options] bash get allocation and shell on allocated node

Software	modules

ARC supplied packages on ARC systems: Easybuild + modules
Module commands:

module list

module reset

module avail

module spider <string>

Standalone modules, toolchains, dependencies:
module load intel

module list

module load ParaView

Software	modules

What actually happens when I load a module?
Loading a module sets environment variables which customize the current runtime environment to
make a package work.

Commands to investigate:
env | grep <str>

which <program>

echo $PATH; echo $LD_LIBRARY_PATH

ldd <path to binary file>

module show <modulename>

https://www.docs.arc.vt.edu/usage/video.html

Easybuild

What is it? An open source, HPC community supported package installation and
management system. Build from source whenever available.
ARC uses Easybuild to provide packages system-wide. You can use it to install
packages, available as modules just for yourself.

Usage overview: (must be on node-type where you intend to use software)
module load EasyBuild

eb -S <search string> eb -D <package name> (optional)

eb <package name> eb --help | less

Anaconda	environments	for	python

Node type matters: You can only expect to use an environment on the partition
where it was built. Environments are not portable.
 - Plan ahead to organize your environments. ~/env/tc/a100/tf2.8
 - Use /projects to share environments with a group.

Avoid conda init and conda activate:
One HOME directory is shared across all ARC systems which have many different,
unique, Anaconda installations.
 - source activate /path/to/env

Anaconda	environments	for	python

Standard steps:
Get interactive job on a node of the
correct type

interact --partition=dgx_dev_q –gres=gpu:1 --
account=personal --time=0:10:00

Load an Anaconda module and other
needed modules

module reset
module load Anaconda3
(optional) module load foss

Create an environment at a path conda create -p ~/env/tcdgx/tf

Activate the environment source activate ~/env/tcdgx/tf

Install packages into the environment conda install python=3.9 tensorflow

Anaconda	environments	for	python

Other info to know:
1. Miniconda is smaller, uses same package manager (conda)
2. Create environments once, not repeatedly in batch jobs
3. For intensive program/library I/O, consider /globalscratch or $TMPFS
4. Environments can be loaded in OnDemand Jupyter notebooks
5. Specify only the most essential packages/versions when installing and let

conda do the rest.

Containers	(Apptainer)
Containerization overview:
• (Usually) Lightweight overlay on a host OS
• Often considered to be "highly portable" or "self contained" (caveats may apply)
• module spider apptainer
• Run command in container: apptainer exec [options] ctnr.sif command
• Docker containers can be set up on your personal computer, then pushed to Dockerhub
• Apptainer can pull from Dockerhub and convert Docker containers to .sif
• Rapidly growing availability of containerized applications
• -B<dir> to "bind mount" directories into the container (eg. /projects/myproj)
• -gpu?

Linux	software	in	a	nutshell
Overview:
Architectures, compilers, libraries, and linking

• All ARC systems currently are x86_64, but have had ppcle. arm64 future?
• Chip capabilities (lscpu, wikichip.org): vectorizations: AVX, AVX2, AVX512
• Memory subsystem organization (numactl --hardware)
• GCC, Intel, AOCC , PGI -> NVHPC, Cray
• MPI, OpenMP, BLAS,

Free open source software - FOSS
Distribution-based package management (root only): rpm, yum, apt, debs

Building	Software	from	Source
The tools are all available: make, cmake, compilers, libraries, etc.
Use EasyBuild to satisfy as many dependencies as you can.

Typical sequence:
module reset

module load foss

tar xf newpackage_4.1.tar.gz

cd newpackage_4.1

./configure --prefix=/projects/brownlab/software/newpackage_4.1/

make

make install

Message	Passing	Interface	(MPI)
Standardized interface for inter-process communication.

Several implementations exist (MPICH, OpenMPI, MVAPICH, Intel MPI, IBM), but each includes
• compiler wrappers (eg. mpicc, mpif90)
• header files and libraries
• can be built to be aware of specialized networks and resource managers (Slurm, Infiniband,

etc)
To use:
• write code that calls MPI functions/routines
• compile and link with MPI compiler and libraries
• launch programs with mpirun or srun inside a job allocation

https://github.com/AdvancedResearchComputing/examples/tree/master/mpi

mpi_quad.c

module load foss/2020b
mpicc mpi_quad.c –o tc_nq_f20b_mpiquad
salloc --nodes=4 --ntasks-per-node=16 --time=0:02:00 --account=personal
mpirun ./tc_nq_f20b_mpiquad

Compilation of programs may need additional
 - paths header files (-I/path/to/inc)
 - paths to libraries (-L/path/to/lib)
 - library names (-ldepend for /path/to/lib/libdepend.so)

Intel, GCC, NVHPC, etc. all use different options which are not cross compatible. Use manual and --help to investigate. Edit makefiles
to customize for ARC software/versions.

Message	Passing	Interface	(MPI)

https://github.com/AdvancedResearchComputing/examples/tree/master/mpi

Thanks	for	watching	and	listening!

ARC	Website:	 www.arc.vt.edu

My	contact	info:	 Matthew	Brown
	 	 brownm12@vt.edu

http://www.arc.vt.edu/

