
Get	your	
code/software	to	run	
on	ARC	systems

April	2022

Matthew	Brown,	Computational	Scientist
Advanced	Research	Computing
Information	Technology
Virginia	Tech

Expectations
• This is an informal workshop
• Mostly informational about ARC and research computing at VT
• I want to hear your questions
• Welcome to use chat to ask questions + some time at the end
• Feedback needed to help improve future workshops

• One up / one down at the end

Spring	2022	ARC	workshop	Series

April 12th or 13th Advanced Research
Computing (ARC) Overview

Mission and goals, resources and services, getting started, getting
assistance

April 19th or 20th Connect to ARC systems and
run your first jobs

VPN, Windows Subsystem for Linux, Git/BASH, MobaXterm/PuTTY,
OnDemand, ssh keys, screen/tmux

April 26th or 27th Get your software to run on
ARC

File management, finding things, monitoring utilization, understanding
your environment, loading software

May 12th – 19th Software Carpentries (VT
Libraries)

Foundations of Unix, Git and Python. Programming with Python. R for
Reproducible Research. The Unix Shell. Version Control with Git

Get	you	software/code	to	work	on	
ARC	systems
Description

ARC systems run software which spans the full spectrum of modern research computing. Many fields have evolved their
software in various ways, but most often within the support models of research computing centers like ARC. This workshop
addresses several of the most common software delivery models and how they can be accessed and used on ARC systems.
The demonstrations will be predominantly via the linux shell command line interface and will cover our "software modules"
system, python environments via Anaconda, and also the main components needed for building software from source
codes, particularly MPI software. Interactive shell jobs are an indispensable resource for each of these models and will be
used to demonstrate how researchers can begin to set up their own software environments and develop workflows on ARC
systems. Attendees who already have ARC accounts are invited to follow along with the demonstrations if desired.

Outline:
- Interactive shell jobs
- Search for, load, and manage modules
- Python with Anaconda environments
- Building from source

First – a bit about file transfers

Command line tools: scp, rsync, wget, curl, tar

Graphical tools: MobaXterm, FileZilla, WinSCP

Other organizations: Globus (VT not currently licensed), cloud

Package and compress files to optimize transfers!
https://www.docs.arc.vt.edu/resources/scratch.html

Interactive shell jobs
Reminder: Please try not to abuse login nodes. Node type matters!
Simplest option: interact --account=<myacct> (accept defaults)
Customizable: All sbatch/salloc/srun options should be accepted.
--partition= --nodes= --ntasks-per-node= --cpus-per-task=
--gres=gpu:1 --time=d-hh:mm:ss

Advanced option: Compose your own salloc or srun commands.
srun get allocation, run command and quit

salloc -> srun get allocation -> run command in allocation
srun –pty [options] bash get allocation and shell on allocated node

Software modules

ARC supplied packages on ARC systems: Easybuild + modules
Module commands:
module list
module reset
module avail
module spider <string>

Standalone modules, toolchains, dependencies:
module load intel; module list; module load ParaView

Software modules

What actually happens when I load a module?
Loading a module sets environment variables which customize the runtime environment to make a
package work.

Commands to investigate:
env | grep <str> which <program>
echo $PATH; echo $LD_LIBRARY_PATH ldd <path to binary file>
module show <modulename>

https://www.docs.arc.vt.edu/usage/video.html

Easybuild

What is it? An open source, HPC community supported package installation and
management system. Build from source whenever available.
ARC uses Easybuild to provide packages system-wide. You can use it to install
packages, available as modules just for yourself.

Usage overview: (must be on node-type where you intend to use software)
module load EasyBuild
eb -S <search string> eb -D <package name> (optional)
eb <package name> eb --help | less

Anaconda environments for python

Node type matters: You can only expect to use an environment on the
partition where it was built. Environments are not portable.
- Plan ahead to organize your environments. ~/env/tc/a100/tf2.8
- Use /projects to share environments with a group.

Avoid conda init and conda activate:

One HOME directory is shared across all ARC systems which have
many different, unique, Anaconda installations.
- source activate /path/to/env

Anaconda environments for python

Standard steps:
1. Get interactive job on a node of the correct type
2. Load an Anaconda module and other needed modules (eg. cuda)
3. Create an environment at a path: conda create -p ~/env/tca100/tf

4. Activate the environment: source activate ~/env/tca100/tf28
5. Install packages into the environment:

conda install python=3.9 tensorflow

Anaconda environments for python

Other info to know:
1. Miniconda is smaller, uses same package manager (conda)
2. Create environments once, not repeatedly in batch jobs
3. For intensive program/library I/O, consider /fastscratch or TMPFS
4. Environments can be loaded in OnDemand Jupyter notebooks
5. Specify only the most essential packages/versions when installing

and let conda do the rest.

Containers	(Singularity)
Containers	overview:
• (Usually)	Lightweight	overlay	on	a	host	OS
• Often	considered	to	be	"highly	portable"	or	"self	contained"	(caveats	may	apply)
• module spider singularity

• Run	command in	container: singularity exec [options] ctnr.sif command

• Docker	containers	can	be	set	up	on	your	personal	computer,	then	pushed	to	Dockerhub
• Singularity can pull from Dockerhub and convert Docker	containers	to	.sif
• Rapidly	growing		availability	of	containerized	applications
• -B<dir> to	"bind	mount"	directories	into	the container	(eg. /projects/myproj)

● Power and energy efficiency
impose a key constraint on
design of micro-architectures

● Clock speeds have plateaued
● Hardware parallelism is

increasing rapidly to make up
the difference

Parallelism is the New Moore’s Law

"Pleasingly	Parallel"
Computations	are	independent	and	can	be	executed	simultaneously.

Examples:	Parameter	sweeps,	numerical	integration,	BLAST	searches

Parallelization	approaches	and	tools:	
- At	BASH	script	level:	GNU/parallel,		srun
- Matlab "parfor"	to	replace	certain	"for"	loops
- FORTRAN/C	codes	on	data	structure	operations:	OpenMP	(threads)	and/or	MPI	
(ranks/tasks/processes)

GNU/parallel
Multifunctional	utility	with	lots	of	features	and	usages.	Great	for	passing	arguments	to	repeated	
commands.
Much	better	for	load	balancing	than	BASH	for	loops.	Manual	has	lots	of	examples	(man parallel)
Examples:
1. Pass	sequence	of	parameters	to	parallel	executed	code:	

ls -d mw* | parallel tar -czf {}.tar.gz {}
seq 10 | parallel 'sleep $((5+2*{}))' &

2. parallel can	load	balance	(-j<#>):	seq 10 | parallel -j3 'sleep $((5+2*{}))' &
3. parallel +	srunwhen	running	on	several	machines	provides	complimentary	features	of	srun

srun features:	
knows	about	hosts	allocated	to	job	and	requested	task	layout
can	control	cpu-binding

Linux	software	in	a	nutshell
Overview:
• Architectures,	compilers,	libraries,	and	linking

• Huckleberry	– ppcle.	All	others	- x86_64
• Chip	capabilities	(lscpu,	wikichip.org):	vectorizations:	AVX, AVX2, AVX512
• GCC,	Intel,	AOCC	,	PGI	->	NVHPC,	Cray
• MPI,	OpenMP,	BLAS,

• Free	open	source	software	- FOSS
• Distribution-based	package	management	(root	only):	rpm, yum, apt, debs

Performance	Monitoring
From	login	node:
jobload <jobid> (while	job	is	running)
seff <jobid> (when	job	has	completed)

You	may	SSH	to	nodes	on	which	you	have	allocated	resources.	Then
• htop –u <username> (process	list,	cpu-load	per	core,	memory	usage)
• nvidia-smi (GPU	status)
• gpumon

CPU	to	task	binding:
--cpu-bind=verbose

add	column	for	PROCESSOR to	htop display

● All processors have access to a
pool of shared memory

● Access times vary from CPU to
CPU in NUMA systems

● Example: CPUs on same node
● OpenMP

● Memory is local to each
processor

● Data exchange by message
passing over a network

● Example: Clusters with
single-socket blades

● MPI

Shared vs. Distributed Memory

● Current	processors	many	cores	on	a	die
● Communication	details	are	increasingly	complex

○ Cache	access	(shared	L3)
○ Main	memory	access	(cores	share	memory	channels)
○ Quick	Path	/	Hyper	Transport	socket	connections
○ Node	to	node	connection	via	network

Multi-Core	Systems
Memory

Network

Memory Memory Memory Memory

numactl --hardware

● Calculations	made	in	both	CPUs	and	GPUs
● No	longer	limited	to	single	precision	calculations
● Load	balancing	critical	for	performance
● Requires	specific	libraries	and	compilers	(CUDA,	OpenCL)

Network

G
P
U

Memory

G
P
U

Memory

G
P
U

Memory

G
P
U

Memory

Accelerator-Based	Systems

"Built-in"	or	library	based	parallelism
MATLAB	examples:
1.	Built-in	Arithmetic	Uses	Available	Cores
module load module tinkercliffs-rome/matlab/R2021a

srun –A personal --nodes=1 --ntasks=1 --cpus-per-task=32 --pty matlab -nosplash -nosoftwareopengl -sd
`pwd`

>> N=25000; A=rand(N); B=rand(N); tic; A*B; toc;

2.	parpool spawns	workers	to	which	parfor can	farm	out	tasks
>> parpool(32);

>> tic; n=200; A=2000; a=zeros(1,n); parfor i=1:n; a(i)=max(abs(eig(rand(A)))); end; toc;

3.	Using	GPUs:				gpuArray

Message	Passing	Interface	(MPI)
Standardized	interface	for	inter-process	communication.

Several	implementations	exist	(MPICH,	OpenMPI,	MVAPICH,	Intel	MPI,	IBM),	but	each	includes
• compiler	wrappers	(eg. mpicc,	mpif90)
• header	files	and	libraries
• can	be	built	to	be	aware	of	specialized	networks	and	resource	managers	(Slurm,	Infiniband,	etc)

To	use:
• write	code	that	calls	MPI	functions/routines
• compile	and	link	with	MPI	compiler	and	libraries
• launch	programs	with	mpirun or	srun inside	a	job	allocation

https://github.com/AdvancedResearchComputing/examples/tree/master/mpi

mpi_quad.c

module load foss/2020b
mpicc mpi_quad.c –o tc_nq_f20b_mpiquad
salloc --nodes=4 --ntasks-per-node=16 --time=0:02:00 --account=personal
mpirun ./tc_nq_f20b_mpiquad

Compilation of programs may need additional
- paths header files (-I/path/to/inc)
- paths to libraries (-L/path/to/lib)
- library names (-ldepend for /path/to/lib/libdepend.so)

Intel, GCC, NVHPC, etc. all use different options which are not cross compatible. Use manual and --help to
investigate. Edit makefiles to customize for ARC software/versions.

Message	Passing	Interface	(MPI)

https://github.com/AdvancedResearchComputing/examples/tree/master/mpi

Support,	Consultation	and	Collaboration
ARC	Helpdesk:	 https://arc.vt.edu/support

ARC	Helpdesk	GRAs	work	as	a	team	to	handle	most	incoming	
questions/problems.	
“How	do	I	setup	SSH	keys	for	authentication?” “What	can	I	do	to	get	my	job	to	launch	faster?” “Why	did	my	job	stop?”

“Is	MATLAB	available	on	Huckleberry?” “How	can	I	share	my	files	with	my	collaborator?”

Escalate	to	ARC	Computational	Scientists	as	needed.

Office	Hours	(https://arc.vt.edu/office-hours)

https://arc.vt.edu/support

Thanks	for	watching	and	listening!

ARC	Website:	 www.arc.vt.edu

My	contact	info: Matthew	Brown
brownm12@vt.edu

http://www.arc.vt.edu/

